Note: This document has been translated from the Japanese original for reference purposes only. In the event of any discrepancy between this translated document and the Japanese original, the original shall prevail.

October 14, 2025

To whom it may concern

Company name: Nippon Carbon Co., Ltd. Representative: Takafumi Miyashita,

Representative Director, CEO

(Stock code: 5302; Prime Market of the Tokyo

Stock Exchange)

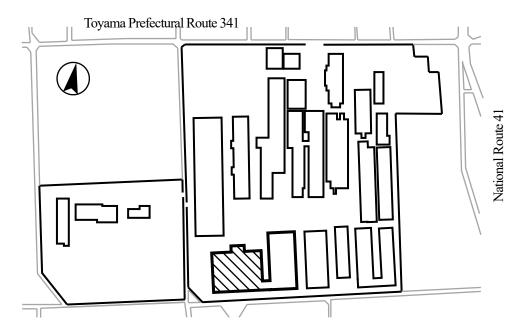
Notice Concerning the Fire Incident at the Toyama Plant (Fourth Report)

Nippon Carbon Co., Ltd. hereby provides the following update regarding the fire that occurred at our Toyama Plant (Toyama City, Toyama Prefecture) on Friday, August 29, 2025, as of 8:30 a.m. on October 14, 2025.

We once again extend our deepest apologies to local residents, business partners, shareholders and investors, related organizations, and all other stakeholders for the significant concern and inconvenience this incident has caused.

1. Overview of the Toyama Plant

The overview of the Toyama Plant is as follows.


- (1) Location: 27 Takauchi, Toyama City, Toyama Prefecture
- (2) Total site area: 233,121 m²
- (3) Products manufactured: Artificial graphite electrodes, lithium-ion battery anode materials, among other products

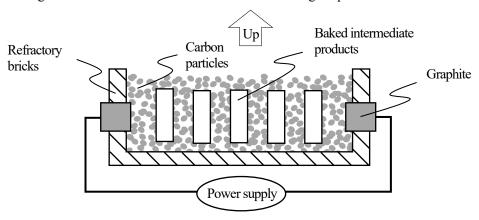
2. Overview of the Fire

2-1. Date, Time, and Location

At approximately 7:15 a.m. on Friday, August 29, 2025, a fire accompanied by a loud explosive sound in the graphitization furnace facilities used in the production process of artificial graphite electrodes (shaded area in the diagram below). Following firefighting efforts by the fire department, the fire was declared extinguished at 4:00 p.m. on Sunday, August 31.

Figure 1: Layout of Buildings within the Premises of the Toyama Plant

2-2. Damage Status


There were no human casualties among local residents or our employees, and no spread of fire to nearby houses or other structures. The total floor area of the building where the fire occurred is $10,907.45 \text{ m}^2$. According to an announcement by the fire department, the fire-damaged floor area was $4,440.32 \text{ m}^2$ (classified as partial burn). Please note that this figure has been revised from the initially announced $4,644.9 \text{ m}^2$.

3. About Artificial Graphite Electrodes

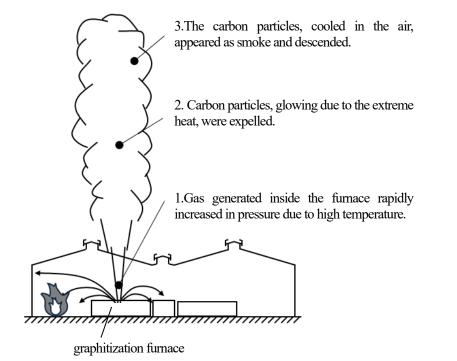
Artificial graphite electrodes are used as steelmaking electrodes to generate arcs when recycling iron scrap in electric steelmaking. The main production processes are as follows:

- (1) Forming: A mixture of coke (produced by carbonizing coal or heavy petroleum oil, with a carbon content of approximately 99% or higher) and pitch (a resin derived from coal) is processed into cylindrical shapes (up to 80 cm in diameter and up to 3 m in length).
- (2) Baking: The formed intermediate products are baked at approximately 1,000°C to carbonize the pitch.
- (3) Graphitization: The baked intermediate products are heat-treated at approximately 3,000°C to grow carbon crystals into graphite. In this process, carbon particles packed around the products inside the furnace are heated above 3,000°C by passing a large electric current through them.

Figure 2: Schematic Cross-Section of the Furnace during Graphitization Process

4. Phenomena Observed During the Fire

We understand that the following phenomena occurred at the time of the incident.


First, during the graphitization process, gas generated inside the furnace rapidly increased in pressure due to high temperature, causing high-temperature carbon particles to be ejected from the furnace. The cause of the gas generation is still under investigation.

Next, the resulting pressure surge damaged the building's roof and windows, and carbon particles, glowing due to their extreme heat, were expelled through the roof.

Finally, the expelled carbon particles either oxidized and disappeared due to the heat, or cooled in the air and appeared as smoke before falling to the ground. Some particles scattered inside the building ignited combustible materials.

The carbon particles are composed essentially of the same carbon material as charcoal and are chemically stable. They do not dissolve in water and are not absorbed by the human body or plants. As carbon materials are also used in foods and pharmaceuticals, these particles are not toxic or hazardous.

Figure 3: Schematic Diagram of the Phenomena Occurring in the Graphitization Furnace Facilities

5. Next Steps

5-1. Consultation Desk

We will continue to maintain a dedicated consultation desk for local residents and remain committed to responding sincerely to concerns and questions related to the incident.

• Telephone: +81-76-467-2291 (Weekdays 9:00–16:30)

• Email: 20250829kasai@carbon.co.jp

5-2. Investigation into the Cause

On-site inspections by the fire department have been completed. Under the guidance of the authorities, we will continue to devote our full efforts to determining the cause of the incident and preventing recurrence.

5-3. Impact on Business Performance

Restoration of the graphitization furnace facilities where the fire occurred is expected to take a considerable period of time. However, by utilizing other production facilities and taking other measures, we currently expect the impact on the artificial graphite electrode supply chain to remain extremely limited.

The amount of damage and losses is currently being assessed. If we determine that this incident is likely to have a material impact on our financial results, we will promptly make a timely disclosure.

For inquiries regarding this matter

Nippon Carbon Co., Ltd.

Administration Division, Business Administration Department.

Telephone:+81-3-6891-3732